Multibiomarker responses to polycyclic aromatic hydrocarbons and microplastics in thumbprint emperor Lethrinus harak from a South Pacific locally managed marine area


  • 1.

    Ostiategui-Francia, P., Usategui-Martín, A. & Liria-Loza, A. Microplastics presence in sea turtles. In Fate and Impact of Microplastics in Marine Ecosystems (eds Baztan, J. et al.) 34–35 (Elsevier, 2017). https://doi.org/10.1016/B978-0-12-812271-6.00035-1.

    Chapter 

    Google Scholar
     

  • 2.

    Wowk, K. M. Chapter 12—Paths to sustainable ocean resources. In Managing Ocean Environments in a Changing Climate (eds Noone, K. J. et al.) 301–348 (Elsevier, 2013). https://doi.org/10.1016/B978-0-12-407668-6.00012-4.

    Chapter 

    Google Scholar
     

  • 3.

    Beiras, R. Chapter 16—Biological tools for monitoring: Biomarkers and bioassays. In Marine Pollution (ed. Beiras, R.) 265–291 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-813736-9.00016-7.

    Chapter 

    Google Scholar
     

  • 4.

    Chen, S.-C. & Liao, C.-M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 366, 112–123 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Zhang, Q. et al. A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environ. Sci. Technol. 54, 3740–3751 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. Polystyrene spherules in coastal waters. Science 178, 749–750 (1972).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Carpenter, E. J. & Smith, K. L. Plastics on the Sargasso sea surface. Science 175, 1240–1241 (1972).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Abdel-Shafy, H. I. & Mansour, M. S. M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 25, 107–123 (2016).

    Article 

    Google Scholar
     

  • 9.

    Wichmann, D., Delandmeter, P. & van Sebille, E. Influence of near-surface currents on the global dispersal of marine microplastic. J. Geophys. Res. Oceans 124, 6086–6096 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Wang, W., Gao, H., Jin, S., Li, R. & Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 173, 110–117 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Hantoro, I., Löhr, A. J., Van Belleghem, F. G. A. J., Widianarko, B. & Ragas, A. M. J. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 36, 674–711 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 12.

    Mercogliano, R. et al. Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. J. Agric. Food Chem. 68, 5296–5301 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C. & Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 702, 134455 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Dehm, J., Singh, S., Ferreira, M. & Piovano, S. Microplastics in subsurface coastal waters along the southern coast of Viti Levu in Fiji, South Pacific. Mar. Pollut. Bull. 156, 111239 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Ferreira, M., Thompson, J., Paris, A., Rohindra, D. & Rico, C. Presence of microplastics in water, sediments and fish species in an urban coastal environment of Fiji, a Pacific small island developing state. Mar. Pollut. Bull. 153, 110991 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 17.

    Reisser, J. et al. Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PLoS ONE 8, e80466 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 18.

    Varea, R., Piovano, S. & Ferreira, M. Knowledge gaps in ecotoxicology studies of marine environments in Pacific Island Countries and Territories—A systematic review. Mar. Pollut. Bull. 156, 111264 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Yang, X., Yu, L., Chen, Z. & Xu, M. Bioavailability of polycyclic aromatic hydrocarbons and their potential application in eco-risk assessment and source apportionment in urban river sediment. Sci. Rep. 6, 23134 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Girardin, V., Grung, M. & Meland, S. Polycyclic aromatic hydrocarbons: Bioaccumulation in dragonfly nymphs (Anisoptera), and determination of alkylated forms in sediment for an improved environmental assessment. Sci. Rep. 10, 10958 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Sarria-Villa, R., Ocampo-Duque, W., Páez, M. & Schuhmacher, M. Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment. Sci. Total Environ. 540, 455–465 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Witt, G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Mar. Pollut. Bull. 31, 237–248 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Rosenfeld, E. & Feng, H. Bioaccumulation of dioxins, PCBs, and PAHs. In Risks of Hazardous Wastes (eds Rosenfeld, P. E. & Feng, L.) 201–213 (Elsevier, 2011).

    Chapter 

    Google Scholar
     

  • 24.

    Shukla, S. K., Mangwani, N., Rao, T. S. & Das, S. 8—Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In Microbial Biodegradation and Bioremediation (ed. Das, S.) 203–232 (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-800021-2.00008-X.

    Chapter 

    Google Scholar
     

  • 25.

    Crawford, C. & Quinn, B. The interactions of microplastics and chemical pollutants. In Microplastic Pollutants (eds Crawford, C. B. & Quinn, B.) 131–157 (Elsevier, 2017).

    Chapter 

    Google Scholar
     

  • 26.

    Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Wang, D.-Q. et al. Polycyclic aromatic hydrocarbons and organochlorine pesticides in fish from Taihu Lake: Their levels, sources, and biomagnification. Ecotoxicol. Environ. Saf. 82, 63–70 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 28.

    International Agency for the Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures (IARC, 2010).


    Google Scholar
     

  • 29.

    Farrelly, T., Borrelle, S. & Fuller, S. Plastic Pollution Prevention in Pacific Islands: Gap Analysis of Current Legislation, Policies and Plans (Environment Investigation Agency-International, 2020).


    Google Scholar
     

  • 30.

    Jager, T. Dynamic modelling for uptake and effects of chemicals. In Marine Ecotoxicology (eds Blasco, J. et al.) 71–98 (Elsevier, 2016). https://doi.org/10.1016/b978-0-12-803371-5.00003-5.

    Chapter 

    Google Scholar
     

  • 31.

    Artiola, J. & Brusseau, M. The role of environmental monitoring in pollution science. In Environmental and Pollution Science (eds Pepper, I. L. et al.) 149–162 (Elsevier, 2019).

    Chapter 

    Google Scholar
     

  • 32.

    Hoet, P. & Haufroid, V. Biological monitoring: State of the art. Occup. Environ. Med. 54, 361–366 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Connon, R. E., Geist, J. & Werner, I. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12, 12741–12771 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Lionetto, M. G., Caricato, R. & Giordano, M. E. Pollution biomarkers in environmental and human biomonitoring. Open Biomark. J. 9, 1–9 (2019).

    Article 

    Google Scholar
     

  • 35.

    Nash, R. D., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor—Setting the record straight. Fisheries 31, 236–238 (2006).


    Google Scholar
     

  • 36.

    Zhelev, Z. M., Popgeorgiev, G. S. & Mehterov, N. H. Changes in the hepatosomatic index and condition factor in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted biotopes in southern Bulgaria. Part II. Bulg. J. Agric. Sci. 3, 517–522 (2015).


    Google Scholar
     

  • 37.

    Araújo, F. G. et al. Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803) in a tropical reservoir in Southeastern Brazil. Braz. J. Biol. 78, 351–359 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Arias, A. H., Ronda, A. C., Oliva, A. L. & Marcovecchio, J. E. Evidence of microplastic ingestion by fish from the bahía Blanca Estuary in Argentina, South America. Bull. Environ. Contam. Toxicol. 102, 750–756 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Li, M.-H. Development of in vivo biotransformation enzyme assays for ecotoxicity screening: In vivo measurement of phases I and II enzyme activities in freshwater planarians. Ecotoxicol. Environ. Saf. 130, 19–28 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Gardiner, M., Thomas, T. & Egan, S. A glutathione peroxidase (GpoA) plays a role in the pathogenicity of Nautella italica strain R11 towards the red alga Delisea pulchra. FEMS Microbiol. Ecol. 91, fiv021 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 41.

    Al-Ghais, S. M. Acetylcholinesterase, glutathione and hepatosomatic index as potential biomarkers of sewage pollution and depuration in fish. Mar. Pollut. Bull. 74, 183–186 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Bethanie, A. C. Oxidative Damage in Fish Used as Biomarkers in Field and Laboratory Studies (Department of Zoology/Zoophysiology, Göteborg University, 2008).


    Google Scholar
     

  • 43.

    Cavalcante, D. G. S. M., Martinez, C. B. R. & Sofia, S. H. Genotoxic effects of Roundup® on the fish Prochilodus lineatus. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 655, 41–46 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Bossart, G. D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 48, 676–690 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 45.

    National Research Council. Animals as Sentinels of Environmental Health Hazards (National Academies Press, 1991).


    Google Scholar
     

  • 46.

    Noventa, S., Pavoni, B. & Galloway, T. S. Periwinkle (Littorina littorea) as a sentinel species: A field study integrating chemical and biological analyses. Environ. Sci. Technol. 45, 2634–2640 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 47.

    Ramos, A. S., Antunes, S. C., Gonçalves, F. & Nunes, B. The Gooseneck barnacle (Pollicipes pollicipes) as a candidate sentinel species for coastal contamination. Arch. Environ. Contam. Toxicol. 66, 317–326 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Silva Junior, D. R., Carvalho, D. M. T. & Vianna, M. The catfish Genidens genidens (Cuvier, 1829) as a potential sentinel species in Brazilian estuarine waters. J. Appl. Ichthyol. 29, 1297–1303 (2013).

    Article 

    Google Scholar
     

  • 49.

    Ferreira, M., Antunes, P., Gil, O., Vale, C. & Reis-Henriques, M. A. Organochlorine contaminants in flounder (Platichthys flesus) and mullet (Mugil cephalus) from Douro estuary, and their use as sentinel species for environmental monitoring. Aquat. Toxicol. 69, 347–357 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 50.

    Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    Veitayaki, J. Fisheries Development in Fiji: The Quest for Sustainability (Institute of Pacific Studies, 1995).


    Google Scholar
     

  • 52.

    Veitayaki, J., Breckwoldt, A., Sigarua, T., Bulai, N. & Rokomate-Nakoro, A. Living from the Sea: Culture and Marine Conservation in Fiji (iTaukei Trust Fund Board, 2016).


    Google Scholar
     

  • 53.

    Damien. LMMA Fiji. The LMMA Network. https://lmmanetwork.org/who-we-are/country-networks/fiji/ (2016).

  • 54.

    UN WCMC ICCA Registry. The ICCA Registry. The ICCA Registry. https://www.iccaregistry.org/en/explore/Fiji/vueti-navakavu (2020).

  • 55.

    Kumar, V. V., Deo, R. C. & Ramachandran, V. Total rain accumulation and rain-rate analysis for small tropical Pacific islands: A case study of Suva, Fiji. Atmos. Sci. Lett. 7, 53–58 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 56.

    Maata, M. & Singh, S. Heavy metal pollution in Suva harbour sediments, Fiji. Environ. Chem. Lett. 6, 113–118 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    QGIS Development Team. QGIS Geographic Information System (QGIS Development Team, 2020).


    Google Scholar
     

  • 58.

    Secretariat of the Pacific Regional Environment Programme. GIS & Spatial Data Dashboard | Pacific Environment Portal. https://pacific-data.sprep.org/gis-spatial-data-dashboard (2019).

  • 59.

    Bennett, R. H. et al. Ethical considerations for field research on fishes. Koedoe 58, 1–15 (2016).

    Article 

    Google Scholar
     

  • 60.

    International Council for the Exploration of the Sea. ICES Techniques in Marine Environmental Sciences (ICES, 1996).


    Google Scholar
     

  • 61.

    Struch, R. E., Pulster, E. L., Schreier, A. D. & Murawski, S. A. Hepatobiliary analyses suggest chronic PAH exposure in hakes (Urophycis spp.) following the Deepwater Horizon oil spill. Environ. Toxicol. Chem. 38, 2740–2749 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 62.

    Pulster, E. L. et al. Chronic PAH exposures and associated declines in fish health indices observed for ten grouper species in the Gulf of Mexico. Sci. Total Environ. 703, 135551 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Ferreira, M., Moradas-Ferreira, P. & Reis-Henriques, M. A. The effect of long-term depuration on levels of oxidative stress biomarkers in mullets (Mugil cephalus) chronically exposed to contaminants. Mar. Environ. Res. 64, 181–190 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 64.

    Ariese, F., Beyer, J., Jonsson, G., Visa, C. & Krahn, M. M. ICES Techniques in Marine Environmental Sciences 41 (ICES, 2005). https://doi.org/10.25607/obp-225.

    Book 

    Google Scholar
     

  • 65.

    Whyte, J. J., Jung, R. E., Schmitt, C. J. & Tillitt, D. E. Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Crit. Rev. Toxicol. 30, 347–570 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 66.

    Fent, K. & Bucheli, T. D. Inhibition of hepatic microsomal monooxygenase system by organotins in vitro in freshwater fish. Aquat. Toxicol. 28, 107–126 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Ferreira, M. et al. Assessment of contaminants and biomarkers of exposure in wild and farmed seabass. Ecotoxicol. Environ. Saf. 73, 579–588 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 68.

    Wang, Z., Jin, L., Wegrzyn, G. & Wegrzyn, A. A novel method for screening the glutathione transferase inhibitors. BMC Biochem. 10, 6–6 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 69.

    Ribalta, C., Sanchez-Hernandez, J. C. & Sole, M. Hepatic biotransformation and antioxidant enzyme activities in Mediterranean fish from different habitat depths. Sci. Total Environ. 532, 176–183 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 70.

    Moore, K. & Roberts, L. J. Measurement of lipid peroxidation. Free Radic. Res. 28, 659–671 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 71.

    Ayllon, F. & Garcia-Vazquez, E. Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: An assessment of the fish micronucleus test. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 467, 177–186 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 72.

    Avio, C. G., Gorbi, S. & Regoli, F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res. 111, 18–26 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 73.

    Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 74.

    RSoftware. RStudio: Integrated Development Environment for R (R Studio Incorporated, 2018).


    Google Scholar
     

  • 75.

    The University of the South Pacific. Animal Research Ethics: A Handbook for USP Researchers (The University of the South Pacific, 2020).


    Google Scholar
     

  • 76.

    Office of the Attorney General. Protection of Animals Act 1954. https://www.laws.gov.fj/Acts/DisplayAct/685#.

  • 77.

    American Veterinary Medical Association. Guidelines for the Euthanasia of Animals. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition (2020).

  • 78.

    Fishbase. Lethrinus harak, Thumbprint emperor: Fisheries. https://www.fishbase.se/summary/Lethrinus-harak.html (2020).

  • 79.

    Prince, J. et al. Spawning potential surveys in Fiji: A new song of change for small-scale fisheries in the Pacific. Conserv. Sci. Pract. 3, e273 (2020).


    Google Scholar
     

  • 80.

    Leatherhead, J. & Woo, P. Fish Diseases and Disorders. Volume 2: Non-infectious Disorders (CABI Publishing, Wallingford, 1998).


    Google Scholar
     

  • 81.

    Carducci, F. et al. Omics approaches for conservation biology research on the bivalve Chamelea gallina. Sci. Rep. 10, 19177 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 82.

    Carpenter, K. FAO species catalogue, volume 9. Emperor fishes and large-eye breams of the world (family Lethrinidae). FAO Fish Synopsis 9, 75–77 (1989).


    Google Scholar
     

  • 83.

    Prince, J. et al. Developing a system of sustainable minimum size limits for Fiji. South Pac. Bull. 155, 51–60 (2017).


    Google Scholar
     

  • 84.

    Logan, D. T. Perspective on ecotoxicology of PAHs to fish. Hum. Ecol. Risk Assess. Int. J. 13, 302–316 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 85.

    Aas, E., Beyer, J., Jonsson, G., Reichert, W. L. & Andersen, O. K. Evidence of uptake, biotransformation and DNA binding of polyaromatic hydrocarbons in Atlantic cod and corkwing wrasse caught in the vicinity of an aluminium works. Mar. Environ. Res. 52, 213–229 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 86.

    Wei, S. et al. Trace organic contamination in biota collected from the Pearl River Estuary, China: A preliminary risk assessment. Mar. Pollut. Bull. 52, 1682–1694 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 87.

    Meador, J. P., Sommers, F. C., Ylitalo, G. M. & Sloan, C. A. Altered growth and related physiological responses in juvenile Chinook salmon (Oncorhynchus tshawytscha) from dietary exposure to polycyclic aromatic hydrocarbons (PAHs). Can. J. Fish. Aquat. Sci. 63, 2364–2376 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 88.

    Soós, K. The occurrence of carcinogenic polycyclic hydrocarbons in foodstuffs in Hungary. In Further Studies in the Assessment of Toxic Actions (eds Chambers, P. L. & Klinger, W.) 446–448 (Springer, 1980). https://doi.org/10.1007/978-3-642-67729-8_104.

    Chapter 

    Google Scholar
     

  • 89.

    Beyer, J., Jonsson, G., Porte, C., Krahn, M. M. & Ariese, F. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environ. Toxicol. Pharmacol. 30, 224–244 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 90.

    Glaus, K. B. J. et al. Fishing for profit or food? Socio-economic drivers and fishers’ attitudes towards sharks in Fiji. Mar. Policy 100, 249–257 (2019).

    Article 

    Google Scholar
     

  • 91.

    Charlton, K. E. et al. Fish, food security and health in Pacific Island countries and territories: A systematic literature review. BMC Public Health 16, 285 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 92.

    Vethaak, A. D. & Leslie, H. A. Plastic debris is a human health issue. Environ. Sci. Technol. 50, 6825–6826 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 93.

    Pulster, E. L. et al. A first comprehensive baseline of hydrocarbon pollution in Gulf of Mexico fishes. Sci. Rep. 10, 6437 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 94.

    Monteiro, M. et al. Impact of chemical exposure on the fish Pomatoschistus microps Krøyer (1838) in estuaries of the Portuguese Northwest coast. Chemosphere 66, 514–522 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 95.

    Shailaja, M. S. & D’Silva, C. Evaluation of impact of PAH on a tropical fish, Oreochromis mossambicus using multiple biomarkers. Chemosphere 53, 835–841 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 96.

    Collier, T. K., Singh, S. V., Awasthi, Y. C. & Varanasi, U. Hepatic xenobiotic metabolizing enzymes in two species of benthic fish showing different prevalences of contaminant-associated liver neoplasms. Toxicol. Appl. Pharmacol. 113, 319–324 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 97.

    Tilson, H. A. EHP papers of the year 2008. Environ. Health Perspect. 116, A234 (2008).

    PubMed Central 

    Google Scholar
     

  • 98.

    Lech, J. J. & Vodicnik, J. Biotransformation of chemicals by fish: An overview. In Cancer Mortality in the United States, 1950–1977 (ed. McKay, F. W.) 355 (National Cancer Institute, 1982).


    Google Scholar
     

  • 99.

    Stanic, B., Andric, N., Zoric, S., Grubor-Lajsic, G. & Kovacevic, R. Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in sterlet (Acipenser ruthenus L.). Ecotoxicol. Environ. Saf. 65, 395–402 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 100.

    dos Carvalho, C. S., Bernusso, V. A., de Araújo, H. S. S., Espíndola, E. L. G. & Fernandes, M. N. Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 89, 60–69 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 101.

    Javed, M., Ahmad, M. I., Usmani, N. & Ahmad, M. Multiple biomarker responses (serum biochemistry, oxidative stress, genotoxicity and histopathology) in Channa punctatus exposed to heavy metal loaded waste water. Sci. Rep. 7, 1675 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 102.

    Khan, M. S., Javed, M., Rehman, M. T., Urooj, M. & Ahmad, M. I. Heavy metal pollution and risk assessment by the battery of toxicity tests. Sci. Rep. 10, 16593 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 103.

    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 104.

    Critchell, K. & Hoogenboom, M. O. Effects of microplastic exposure on the body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus). PLoS ONE 13, e0193308 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 105.

    Barboza, L. G. A. et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 717, 134625 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 106.

    Smith, M., Love, D. C., Rochman, C. M. & Neff, R. A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 5, 375–386 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 107.

    Tien, C.-J., Wang, Z.-X. & Chen, C. S. Microplastics in water, sediment and fish from the Fengshan River system: Relationship to aquatic factors and accumulation of polycyclic aromatic hydrocarbons by fish. Environ. Pollut. 265, 114962 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 108.

    Pannetier, P. et al. Environmental samples of microplastics induce significant toxic effects in fish larvae. Environ. Int. 134, 105047 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 109.

    Feckler, A., Low, M., Zubrod, J. P. & Bundschuh, M. When significance becomes insignificant: Effect sizes and their uncertainties in Bayesian and frequentist frameworks as an alternative approach when analyzing ecotoxicological data. Environ. Toxicol. Chem. 37, 1949–1955 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 110.

    Gagnon, M. M. & Hodson, P. V. Field studies using fish biomarkers—How many fish are enough?. Mar. Pollut. Bull. 64, 2871–2876 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 111.

    Gusso-Choueri, P. K. et al. Assessing pollution in marine protected areas: The role of a multi-biomarker and multi-organ approach. Environ. Sci. Pollut. Res. 22, 18047–18065 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 112.

    EFSA Scientific Committee. Statistical significance and biological relevance. EFSA J. 9, 2372 (2011).


    Google Scholar
     

  • 113.

    Smallhorn-West, P. F., Weeks, R., Gurney, G. & Pressey, R. L. Ecological and socioeconomic impacts of marine protected areas in the South Pacific: Assessing the evidence base. Biodivers. Conserv. 29, 349–380 (2020).

    Article 

    Google Scholar
     

  • 114.

    Gurney, G. G. et al. Efficient and equitable design of marine protected areas in Fiji through inclusion of stakeholder-specific objectives in conservation planning. Conserv. Biol. 29, 1378–1389 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • 115.

    Thaman, R. R., Fong, T. & Balawa, A. Biodiversity and ethnobiodiversity of finfishes of Vanua Navakau, Viti Levu, Fiji Islands. vol. 4 54 https://spccfpstore1.blob.core.windows.net/digitallibrary-docs/files/88/88a1f351144fda547a2b74821378837f.pdf?sv=2015-12-11&sr=b&sig=7FE3M2PyLkAzBAobwSYT7tc%2BObPd6lOg7oXLcdmHzC4%3D&se=2020-04-03T23%3A45%3A50Z&sp=r&rscc=public%2C%20max-age%3D864000%2C%20max-stale%3D86400&rsct=application%2Fpdf&rscd=inline%3B%20filename%3D%22ENG_2008_Biodiversity_ethnodiversity_finfishes.pdf%22 (2008).



  • Source link

    We will be happy to hear your thoughts

    Leave a reply

    Ozinize
    Logo
    Shopping cart